If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+40x+40=0
a = 10; b = 40; c = +40;
Δ = b2-4ac
Δ = 402-4·10·40
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{-40}{20}=-2$
| 3(x+7)^2-10=23 | | 103+3x=180 | | 3n2+2=-15n | | 103+x+2x=180 | | 4x(6+3)=(4x6)+(4x3) | | x^2=-4(2x=3) | | -8-2=-2+2-y | | 21-42-35-18=x-27 | | x^2+100x-120=0 | | -2-42-4-21=x | | 6s+1=4s-2 | | x/3/10=27/10 | | 36^2m=216^2m+2 | | -10-5x=0.30(18+9x) | | 90+1x+35=-6x+139 | | 3.2=6.8u | | x+2/14=9/13 | | -0.25(36x-12)=-51 | | 13=8p+5 | | -15=0.5(4n+6) | | -15=1/2(4x+6) | | (2^x+3)(2^x)=32 | | 3x+17/4=-7x-15/3 | | (.8x)+x=252 | | 90-2x+36=4x+96 | | 3x+5(-4-4)=2 | | -1x+140+4x-17=180 | | (x-3)2=225 | | (D^2+D-2)y=2 | | a/9=1/4/2.1 | | a=9/4/2.1 | | 10p+5+3=-2(1-2p)+8(p-6) |